
NOTATION 

a, vibration amplitude; f, vibration frequency; fdet, bubble formation frequency; fdet, 
mean bubble formation frequency; m2, dispersion; x, initial first-order moment; S, mean quad- 
ratic deviation; o, measurement error; Ts, heater surface temperature; z, time. 
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TWO-DIMENSIONAL RADIATIVE HEAT TRANSFER WITH ALLOWANCE FOR SHADING 

V. F. Kravchenko and V. M. Yudin UDC 536.3 

Radiative heat transfer with account taken for shading in an infinite cylinder 
whose contour is made up of arbitrary straight-line segments and which has vari- 
able temperature and emissivity on its two sides is examined. 

Calculation of heating of high-speed aircraft structures reduces to solving problems of 
conductive and radiative heat transfer in complex systems of thin-walled elements with in- 
ternal closed spaces. Because of the peculiarities of the structure geometry and the specif- 
ic heating conditions it is possible in many cases to limit examination to problems of radi- 
ative heat transfer and heat conduction in a simple configuration. 

We consider radiative transfer in an infinite cylinder in which the temperature and the 
optical properties of the internal surface, which is assumed to be gray and diffuse, do not 
vary in the axial direction. We consider the cylinder to be closed; an open cylinder can be 
closed in many cases by introducing a fictitious surface with emissivity e = 1 and tempera- 
ture T = (q=/o) I/4, where q~ is the heat flux scattered from the surrounding medium. 
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Fig. i. Computational acheme. 
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We assume that the contour of the cylinder cross section is made up of straight-line 
segments. This assumption corresponds to most actual problems and, in addition, any continu- 
ous contour can always be approximated by a series of straight-line segments, The tempera- 
ture and emissivity vary on the two sides of the contour. 

We first consider the case where the contour is nonconcave. The radiative transfer in 
this kind of contour is described by an integral Fredholm equation of the second kind for 
the incident flux density: 

(p) = ~ {os (p') T ~ (p') + [i - -  s (P')] ~no (p')} K (p, p') dl', ( I )  qinc 
L 

where K(p, p') is a function of the angular coefficients, 

K(p, p ' j = K ( p ' ,  ~ =  cos~z(p, P')C~ P') (2) 
2R (p, p') 

and ~i, ~2 are the angles between the normals to the contour and the segment joining the 
points p and p' of length R(p, p') (see Fig. i). 

A zonal method [1-3] is widely used to solve Eq. (i), However, because the ~emperature 
varies considerably around the contours typical of aircraft structures, in using the zonal 
method one has to break up the contour into a large number of zones and, consequently, to 
solve a system of linear algebraic equations of high order. The generalized zonal method 
[4, 5] allows one to reduce the number of zones and thus the order of the system of alge- 
braic equations to be solved. However, in calculating the radiative transfer in concave re- 
gions difficulties arise in allowing for shading. These difficulties can be overcome by us- 
ing a quadrature method, in which the integral equation is rendered algebraic by approximat- 
ing the integral with quadrature formulas. Then to increase the accuracy of the approxima- 
tion it is desirable to use quadratures of very high algebraic accuracy [6]. This approach 
for solution of integral equations gives very good results if the kernel of the equation has 
no singularities. In the case considered the kernel K(p, p') has singularities at the ver- 
tices of the contour. To avoid these singularities we write Eq, (I) as the following system 
of integral equations for each side: 

qinc (P') = 2 S~{~e (p}) T~ (p}) + [1 --~ (p})] qine (p})} If (p,, p})dt', 
/=1 0 

i =  I, 2, . . .  , n, 

(3) 

where Pi, Pj are points on the i-th and j-th sides of the contour. Now the singularities are 
localized at the edges of the integration intervals and they can be avoided by integrating by 
parts in Eq. (3): 

n 

qinr (p~) = E {~s (p}) T~(p}) + [1 e (p})] qinc (P})} ~ (P" "'LJ I - -  P)i p'.=o- 
]=1 

-- ~ i '  d--~{oe(p})T~(p})+ [l--s(p})]qin e(p))}K(p~, p})dl', 
"~ Jo dF 

i = 1 , 2  . . . .  ,n, 

(4) 

where 

R (p. = ; K (p. p)) = !2 (p,, O. (5) 

Since values of the integrand function enter into Eq. (4) at the ends of the intervals 
of integration, for the algebraic system of equations (4) we use a Markov quadrature formula, 
which includes the boundary points and has accuracy of order 2m -- 3, where m is the number of 
nodes of integration, 
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Fig. 2. Number of iterations as a func- 
tion of E: i) simple iteration method; 
2) Aitken ~a-process; 3) using Eq. (ii). 

L 1 m 

S f (l) d l =  L # (f (l) d l =  L Z C~m) f (M(/m). 
0 0 r ~ l  

(6) 

The integration node coordinates Mr (m) and the values of the coefficients Cr (m) have been 
given in [6] up to m = 18 for the interval (--I, i). 

We use the notation 

f (p) ----- ~e (p) T 4 (p) -~- [1 -- 8 (p)] q. (p), 
l n c  

and we denote by Mj,k and Cj,k the Markovian integration nodes and the coefficients for the 
j-th side of the contour. Then the system of algebraic equations approximating the system 
of integral equations (4) is written in the form 

n mj n 

qinc ('Mi,n) = E {f (My'm) ~ (Mi'~' MJ'm) - f  (M#'I) ~ (M*'k' -~,,l)} - -  E E 
/=1 i=l r=l 

- df Cj,, t< (M,,~, Mj,~) ~ (M j,0, 

(7) 

i =  1, 2, . . .  , n, k =  1, 2, . . .  , m i. 

The derivatives df/d~ for both the internal and the boundary points are evaluated from 
values of the function f(p) at the three points: 

d_f (M j,0 = A~ m' f (Ms,0 + A~ m~ f (Mj,~) + AI ~ f (Mj,~), 
dI 

--=-_ ~(,~) B~.O (Mi,.) o~-~ df (Mj,r) = ~r-I f (Mi,r-1) + f @ ~r+~ f (Mi,r+I), 
dl 

r = 2 ,  3 . . . .  , m - - I ,  

d_f (Mj ,m) ----- D[ m) f (Mi,m-2) "-~ D(2 m) f (Mi,m-O q- Da m) f (Ml,m)" 
dl 

(8) 

In the case m = 2 

df (M LI) = df 
d7 - ~  (Mj,O = f (Mj,~) -- f (M:,O. (9) 
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Thus, we have obtained a system Zmi of algebraic equations (7) for the incident 
i=l 

thermal flux at the Markovian points. 

To solve this system for unsteady conductive and radiative heating it is desirable to 
use iterative methods, since the use of the solution obtained at the (n -- l)-th step as an 
initial approximation at the n-th time step ensures rapid convergence of the iterativeprocess. 

In order to compare the efficiency of different iterative processes and to choose the 
best one, we considered the problem of radiative transfer in an irregular tetragonal region 
in which three sides have constant and different temperatures, and the fourth has variable 
temperature. The emissivities were taken to be constant and identical for all the sides. 
The total number of Markov points was chosen to be 20. The initial approximation was taken 
as zero. The iterative process was considered to end when the maximum relative difference 
was no more than A = 10 -8 . 

The result was that the simple iterative method gave a more rapid divergence than the 
Zeidel method. With e = 0.5 in the first case the number of iterations was 29, and 36 in the 
second case. Acceleration of convergence using the Aitken 62-process reduced the number of 
cycles in calculating qinc to 26. To accelerate the convergence even more we use the condi- 
tion that energy is conserved in radiative transfer in a closed cavity 

e (p) qinc (p) al = ~ a~ (p) T ~ (p) dl .  ( 1 0 )  
L L 

Here the simple iteration algorithm was modified so that the original data for the k-th 
approximation, instead of the values q(k-l)(M i r) used the quantities 

-inc , ' 

where 

%~ = + o, 

i - -1,  2 . . . . .  n, r : l ,  2 . . . . .  mi, 

(ll) 

m i ra i 

0 ~ f = l  r = l  i = I  r = l  
ms 

"~1 r ~ l  

The use of relation (ll) gives substantial acceleration of convergence, particularly at 
small ~. Figure 2 shows data on the number of iterations for various s, obtained from calcu- 
lations using the simple iteration method (curve i), the Aitken 62-process (curve 2), and 
Eq. (ii) (curve 3). 

Then after determining the incident fluxes at the Markov points the quantity qinc can 
be obtained at any point of the contour by interpolation or by the formula 

n n m j  

qinc (Ms)= {[ (M: ,m) R (Ms , M/,,,)--[(M:,,)R(Ms, M:,,)} - -  EE 
1=i /=1 r ~ l  

Ci,r-K(Ms, Mir) d~'_ [ (Mj,r). (12) 
' dI 

The values of qinc at the supplementary points Ms, obtained from Eq. (12), can also be used 
in the interpolation to increase the accuracy. 

In order to check the accuracy of the method of solution considered we conducted computa- 
tions for 4, 6, and 9 Markov points on each side of the tetragon for the case when variable 
temperatures are given for all the sides, and the errors are estimated according to the Runge 
rule. The errors turned out to be 0.054% for four points, 0.01% for six points, and 0.0009% 
for nine points. 
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We turn now to solve the problem of radiative transfer in a region with an arbitrary 
contour (allowing for shading). The integral equation (i) and the system of integral equa- 
tions (3) remain the same, and only the kernel 

K (p, p ' )  = K (p',  p) = 
cos qh (P, P') cos qh (P, P') for •  

2R (p, p ' )  (13)  

0 for • 1 

changes, where K is the visibility parameter; for m = 0 the point p sees p', and for K = 1 
it does not see it. 

The points p and p' will see each other if the angles between the normals to the sur- 
faces on which they lie and the intercept R(p, p') joining them are less than 7/2 in absolute 
magnitude, i.e., 

cosqh(p, p ' ) > 0 ,  c0sq~2(p' , p ) > 0  (14) 

and the intercept R(p, p') does not intersect any side of the contour, apart from the side 
on which these points lie: 

1 2 t h - - l [ > l ,  k = l ,  2, . . .  , n, 

[ 2 t % - - I t > 1  , k = / : i ,  ], 

(15) 

where 

th = (x k - -  xp) (Yk - -  Yp) - -  (xh - -  xh+~) (Yh - -  Yp) - ,  

(Xp, - -  xv)  (y~ - -  Yh+l) - -  (xh - -  xh+l) (Yp' - -  Yp) 

( x .  - -  xp) (Yk - -  Yp) - -  (xk - -  xp) (Yr  - -  Yp) t ; -  
(Xp' - -  Xp) (Yk - -  Yh+l) - -  (Xk - -  Xh+I) (yp" - -  yp) 

(16)  

Here Xk, Yk, Xk+i, Yk+i are the vertex coordinates, Xp, yp, Xp', yp' are the coordinates of 
the points p and p', and i and j are the number of sides on which these points lie. 

Since the integrand function in Eq. (3) may have discontinuities in some intervals of 
integration because of the shading and the dependent relations (13), one must define the 
position of the points of discontinuity in the function, in order to allow for this in elimi- 
nating singularities and in making the system of equations algebraic. The discontinuity 
points are boundary points between the visible and invisible sections of the contour. Be- 
cause the contour is discontinuous the visible sections must necessarily include the begin- 
ning or the end of a side, or both, if there are two invisible sections on a side. The 
boundaries of visible regions, between the vertices, will be the points on the horizon and 
the points of intersection with the first visible side of rays emitted from the test point p 
and proceeding through visible vertices for which 

coscp2(Mi_,.~, P ) < O  ] = 2 ,  3, . . .  , n - 6 1 ,  (i7) 

or 

coscp~(M/.,, p ) < O ,  ] = 1 ,  2, . . .  , n. (18) 

The condition for visibility of the j-th vertex is 

1 2 t ~ - - l [ ] ~ l ,  k = l ,  2, . . .  , n ,  

1 2 t ~ - - l ] > l ,  k=/=i,  ] - - 1 ,  ], 
(19) 

where t k and t k' are determined from Eq. (16), with Xp, and yp' replaced by xj and yj. 
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Fig. 3. Temperature distribution 
T (~ over the elements of a 
caisson. 
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Fig. 4. Distribution of incident 
heat flux density qinc (kW/m2) 
over the internal surface of the 
caisson. Solid lines are with 
shading accounted for (with 
stringers); broken lines are for 
no shading (and no stringers). 

If we add the vertices of the i-th side on which the point p lies to the visible group, 
then conditions (17) and (18) determine all the rays which divide the visible region from the 
invisible. Then rays corresponding to condition (18) determine the beginnings of the vis- 
ible region, and condition (17) determines their ends. 

Let r(rl, r=, ..., r~, ...), s(s~, s=, ..., s T .... ), d(d~, d=, .... dn, ...) be, re- 
spectively, sequences of increasing numbers of all the visible vertices and vertices cor- 
responding to conditions (17) and (18). 

Then the number of sides g~ on which the point of intersection Hpi,g q corresponding to 

the start of a visible region, of the ray proceeding via vertex d~, will be equal to 

when we satisfy the conditions 

g n = k  (20) 

0 ~ t'pi,k < 1, to i,k = rain, 

cos q~ (Hp,,k, &) > O, 

k d n + l ,  d n + 2  . . . . .  r~- - l ,  r~>d~=rr 

(21) 

with 

Similarly, for the end boundary point Gpi,qT, corresponding to vertex sT, we have 

q ~ = k  (22) 

O < t p i . ~ l ,  tp i ,k=min, 

cos % (Gpi.k, &) > O, 

k=r~, r~q- 1 . . . . .  s~--l ,  r~<2s~==r~,+l. 

(23) 

39 



Here tpi,k and tpi,k' are calculated from Eq. (16) with Xp and yp replaced by Xpi , YPi and 

T ! Xp,, yp, replaced by Xd~ , Yd~, and Xs T, YsT, respectively. The values tpi,g ~ and tpi,q T 

obtained when conditions (21) and (23.)are satisfied determine the position of the points 
Hpi,g ~ and Gpi,q ~ relative to the origin of the corresponding side. 

Knowing the position of the boundaries of visible regions, we can proceed to regularize 
and solve the system of equations (3), allowing for shading. First, for the regions of in- 
tegration within which lie the corresponding boundaries of the visible regions, the lower, 
u~per, or both limits of integration must be replaced, respectively, by the quantities 

' which determine the positions of the boundaries, and the kernel (5) is tpi,g n and tpi,qT, 

represented in the form 

(p,, p))= ~s in~(p , ,  p)) for • 

- 0 ~r • (24) 

When system (3) is rendered algebraic, the nodal integration points remain unchanged, 
but the values of the functions at points Mg~,1 and MqT,m , under the sign of the first sum 

in Eq. (7), are replaced by their values at the appropriate boundary points Hpi,g n and 

Gpi,q T. In the second sum the values of the functions at the points Hpi,g n and Gpi,q T are 

taken instead of values of the functions at the invisible Markov points Mg~,y and MqT,p 

closest to the boundaries of the visible region and, correspondingly, are replaced by values 
of the coefficients 

? 

cg o ,  = ~ ,  C~,l,~, - t~,~.~, 1, 
k = l  

Cq~.~ : ~ CqT,k - -  (1 --t~i,q~ ). 
k=p 

(25) 

A Fortran program was written to carry out these operations. The program computed 
radiative heat transfer in regions with an arbitrary contour made up of linear segments for 

maximum number of Markov points m; -- 100 and number of sides n = 50. 
i=I 

This program was used to calculate radiative heat transfer in a rectangular caisson with 
a top three-stringer panel, with the temperature distribution of Fig. 3, typical of aircraft 
structures. For symmetry reasons, Fig. 3 only shows the left half of the segment. The emis- 
sivity was assumed constant over the entire contour and equal to s = 0.5. The total number 

of Markov subdivision points was ~ mj----85. 
]=1 

The position and number of these points on both 

sides are shown by points on the incident heat-flux-density-distribution curve shown in Fig. 
4. The number of iterations for a zero initial approximation and A = 10 -7 was 15. Here the 
distribution qinc with no stringers (no shading) is shown by broken lines. 

NOTATION 

x,y, coordinates; I , contour coordinate; T, temperature; q~, heat flux from surrounding 
medium; qinc, incident heat flux; ~, Stefan--Boltzmann constant; s, emissivity; K(p, p'), 
function of angular coefficients; ~, angle; p, p', contour points; n, number of sides of the 
contour; Lj, length of the j-th side of the contour; mj, number of Markov points on the j-th 
side; Mi,k, Markov points; Ci,k, Markov coefficients; Ms, supplementary points; A, B, D, co- 
efficients; ~, visibility parameters; tk, t~, parameters; Hpi ' g , initial point of the 

visible region; G q , final point of a visible region; t' k' relative distance of boun- 
Pl, T �9 pj, 

daries of the visible region from the beginning of the side; A, maximum relative error. 
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! 
final point of a visible region; Gpi,q T, final point of a visible region; tpi,k, relative 

distance of boundaries of the visible region from the beginning of the side; A, maximum rela- 

tive error. 
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RADIATION OF SULFUR DIOXIDE 

Yu. A. Popov UDC 536.3 

Using spectral-analysis data and the statistical model of Goody, the emissivity 
and absorption coefficient of sulfur dioxide are calculated. 

In many furnaces of nonferrous metallurgy and the chemical industry it is required to 
make allowance for the radiation of sulfur dioxide, SO2. The nomograms of the integrated 
emissivity zSO 2 presented in [i] were based on the Bouger law, which is not satisfied for 
the vibrational--rotational absorption bands of a gas when the frequency-averaging interval 
exceeds the width of the spectral lines. The calculation presented in [2] was based on the 
Edwards band contour model, which fails to describe the contour of the vibrational--rotational 
bands accurately enough. Reliable results for the integrated emissivity of S02 were obtained 
experimentally by Golitsin and Berlin [3, 4]. These results lay roughly 40% below those of 
[I] and were approximately double the theoretical data of Chan and Tien [2]. However, the 
volume of experimental material in [3, 4] was insufficient for practical application, and the 
empirical formulas proposed in [3] are insufficiently accurate even in the region covered by 
the experiments (Fig. 2). 

In this paper we shall calculate the integrated emissivity and absorption coefficient of 
S02 using the statistical model of the absorption bands of gases developed by Goody [8]. In 
order to choose the parameters of the model and the shape of the band contour we used the 
spectral results obtained at room temperature by Chan and Tien [2]. An analogous method was 
employed for calculating the emissivity and absorption coefficient of C02 and water vapor [5]. 

The S02 molecule is nonlinear; its rotational constants are well known [6]: 

,4----2.027 cm-1; B----0.3442 cm-1; C ~ 0 . 2 9 3 5  cm -1 

The smoothed absorption coefficient of the band i of a nonlinear molecule takes the form [5] 

x i (1 - -  e -x) I y~ lexp [ - -  vTg~fi (y~T)]. (1) 

Here x i = hc~i/kT , x = hcv/kT, Yi = xi- x. The constant y is determined by the expression 
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